Penerapan Algoritma PSO pada Sistem Fuzzy Tsukamoto untuk Optimasi Kontrol Suhu Paludarium Fire belly Newt Berbasis IoT

Authors

  • Cinta Ramayanti Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Henni Endah Wahanani Universitas Pembangunan Nasional “Veteran” Jawa Timur

Keywords:

Fuzzy Tsukamoto, PSO, IoT, Paludarium, Pengendalian Suhu, Fire-Belly Newt, Particle Swarm Optimization

Abstract

Penelitian ini mengembangkan sistem pengendalian suhu otomatis pada paludarium Fire-Belly Newt berbasis IoT menggunakan Fuzzy Tsukamoto yang dioptimasi dengan PSO. Sistem memanfaatkan sensor DS18B20, mikrokontroler ESP32, dan modul Peltier untuk menjaga suhu air dalam rentang ideal 22–25 °C, dengan parameter fuzzy yang dioptimasi PSO agar kontrol lebih presisi. Hasil pengujian menunjukkan sistem mampu mengendalikan suhu secara stabil dengan selisih 0,5–1 °C terhadap suhu aktual dan menampilkan data real-time melalui aplikasi Blynk, mendukung pengendalian adaptif dan kesejahteraan hewan.

References

K. Guo et al., “Species distribution models for predicting the habitat suitability of Chinese fire-bellied newt Cynops orientalis under climate change,” Ecol Evol, vol. 11, no. 15, pp. 10147–10154, Aug. 2021, doi: 10.1002/ece3.7822.

D. Ramdani, F. Mukti Wibowo, and Y. Adi Setyoko, “Rancang Bangun Sistem Otomatisasi Suhu Dan Monitoring pH Air Aquascape Berbasis IoT (Internet Of Thing) Menggunakan Nodemcu Esp8266 Pada Aplikasi Telegram,” Journal of Informatics Information System Software Engineering and Applications (INISTA), vol. 3, no. 1, 2020.

Adi Winarno and M. Affandi, “Design and Construction of Smart House Prototype Based Internet of Things (Iot) Using Esp8266,” BEST : Journal of Applied Electrical, Science, & Technology, vol. 4, no. 1, 2022, doi: 10.36456/best.vol4.no1.5447.

M. Abdurohman, A. G. Putrada, and M. M. Deris, “A Robust Internet of Things-Based Aquarium Control System Using Decision Tree Regression Algorithm,” IEEE Access, vol. 10, pp. 56937–56951, 2022, doi: 10.1109/ACCESS.2022.3177225.

P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. Imura, and M. Sangworasil, “Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators using PID-Driven Data Techniques,” Journal of Robotics and Control (JRC), vol. 4, no. 2, 2023, doi: 10.18196/jrc.v4i2.18108.

M. M. H. AL-Khafaji, A. A. A. Kadauw, M. M. Abdulrazaq, H. M. H. Al-Khafaji, and H. Zeidler, “A Hybrid Fuzzy-PSO Framework for Multi-Objective Optimization of Stereolithography Process Parameters,” Micromachines (Basel), vol. 16, no. 11, p. 1218, Oct. 2025, doi: 10.3390/mi16111218.

A. Bala, C. P. C. Munaiseche, K. Santa, and K. Kunci, “Sistem Kontrol Alat Pengukur Berbasis IoT Menggunakan Fuzzy Tsukamoto Dipeternakan Ayam Broiler Desa Tonsea Lama.”

K. Ruthsatz et al., “Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations,” Glob Chang Biol, vol. 30, no. 5, May 2024, doi: 10.1111/gcb.17318.

J. Scheun, L. Venter, and A. Ganswindt, “A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian,” PeerJ, vol. 12, no. 8, 2024, doi: 10.7717/peerj.17847.

P. Pottier et al., “A comprehensive database of amphibian heat tolerance,” Sci Data, vol. 9, no. 1, Dec. 2022, doi: 10.1038/s41597-022-01704-9.

P. Pintanel, M. Tejedo, F. Almeida-Reinoso, A. Merino-Viteri, and L. M. Gutiérrez-Pesquera, “Critical thermal limits do not vary between wild-caught and captive-bred tadpoles of agalychnis spurrelli (Anura: Hylidae),” Diversity (Basel), vol. 12, no. 2, Feb. 2020, doi: 10.3390/d12020043.

R. Saatchi, “Fuzzy Logic Concepts, Developments and Implementation,” Information (Switzerland), vol. 15, no. 10, Oct. 2024, doi: 10.3390/info15100656.

R. Urbieta Parrazales, M. T. Zagaceta Álvarez, K. A. Aguilar Cruz, R. Palma Orozco, and J. L. Fernández Muñoz, “Implementation of a fuzzy logic controller for the irrigation of rose cultivation in mexico,” Agriculture (Switzerland), vol. 11, no. 7, Jul. 2021, doi: 10.3390/agriculture11070576.

C. Liu, “Particle Swarm optimization of Type-2 fuzzy control for regenerative braking of electric vehicles,” Front Mech Eng, vol. 11, 2025, doi: 10.3389/fmech.2025.1612690.

M. Flores-Iwasaki, G. A. Guadalupe, M. Pachas-Caycho, S. Chapa-Gonza, R. C. Mori-Zabarburú, and J. C. Guerrero-Abad, “Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis,” Mar. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/agriengineering7030078.

R. S. Raheem, M. Y. Hassan, and S. K. Kadhim, “Particle swarm optimization based interval type 2 fuzzy logic control for motor rotor position control of artificial heart pump,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 2, pp. 814–824, Feb. 2022, doi: 10.11591/ijeecs.v25.i2.pp814-824.

Downloads

Published

2025-12-22

How to Cite

Ramayanti, C., & Henni Endah Wahanani. (2025). Penerapan Algoritma PSO pada Sistem Fuzzy Tsukamoto untuk Optimasi Kontrol Suhu Paludarium Fire belly Newt Berbasis IoT. Prosiding Seminar Nasional Informatika Bela Negara (SANTIKA), 5(2), 149–154. Retrieved from https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/864

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.