Analisis Perbandingan Metode Fuzzy Logic Sugeno dengan Tsukamoto dalam Keputusan Prediksi Kemungkinan Lulus Mahasiswa Tepat Waktu

Authors

  • Rangga Widiasmara
  • Muhammad Iqmal Basori
  • Raihan Rafi Listyan Putra UPN "Veteran" Jawa Timur
  • Anggraini Puspita Sari

Keywords:

Kecerdasan buatan, Artificial Intelligence, Prediksi, Kemungkinan lulus tepat waktu, Sugeno’s Fuzzy Logic Method, Tsukamoto’s Fuzzy Logic Method.

Abstract

Pendidikan tinggi merupakan tahapan penting dalam pengembangan sumber daya manusia dan pertumbuhan ekonomi suatu negara. Dalam mencapai tujuan tersebut, salah satu indikator penting adalah tingkat kelulusan mahasiswa tepat waktu. Kelulusan tepat waktu merupakan ukuran keberhasilan institusi pendidikan dalam membimbing mahasiswa hingga menyelesaikan studi dalam jangka waktu yang telah ditetapkan. Maka dari itu, kami ingin membuat suatu sistem / program yang dapat membantu memprediksi kemungkinan lulus mahasiswa agar perguruan tinggi dapat mengetahui potensi masing - masing mahasiswa maupun angkatan mahasiswa tertentu. Kami menggunakan Kecerdasan buatan dengan metode logika fuzzy Sugeno dan Tsukamoto untuk membandingkan logika mana yang lebih cocok untuk diterapkan pada kasus ini.

References

Sari, A. P., Suzuki, H., Kitajima, T., Yasuno, T., & Prasetya, D. A. (2020). Prediction Model of Wind Speed and Direction using Deep Neural Network. JEEMECS (Journal of Electrical Engineering, Mechatronic and Computer Science), 3(1), 01-10.

Azadeh, A., & Bahadori, M. (2021). A New Fuzzy Decision Tree Approach for Predicting Students' Graduation Status. Applied Soft Computing, 103939.

Chen, S., & Cao, M. (2021). Predicting Students' Graduation Status using a Hybrid Fuzzy Neural Network. Soft Computing, 25(4), 3031-3043.

Zhang, L., Tang, H., & Li, Y. (2020). Predicting Graduation Status of College Students based on Fuzzy Rough Set and Support Vector Machine. Journal of Intelligent & Fuzzy Systems, 39(2), 2439-2450.

Saeed, A., Ali, T., & Shoaib, M. (2019). A Fuzzy Logic-Based System for Predicting Students' Graduation Status in Higher Education. IEEE Access, 7, 140790-140801.

Nguyen, T. T., Hoang, D. H., & Dao, N. L. (2018). A Fuzzy Logic Approach to Predicting Students' Graduation Status in Tertiary Education. International Journal of Fuzzy Systems, 20(2), 438-450.

Rizaldi, & Herawan. (2020). Prediksi Kelulusan Mahasiswa Menggunakan Logika Fuzzy pada Program Studi Teknik Informatika. Jurnal Teknologi dan Sistem Informasi (JTSI), 6(1), 10-19.

Haris, & Saragih. (2018). Prediksi Kelulusan Mahasiswa Menggunakan Fuzzy Logic Sugeno. Jurnal Ilmiah Teknologi Informasi Asia (JITI Asia), 12(1), 16-22.

Rindu Rika M., A. M. Fadlisyah, & Dede Pratama. (2019). Prediksi Kelulusan Mahasiswa Menggunakan Fuzzy Tsukamoto. Jurnal Informatika, 16(2), 113-120.

Saragih, R., & Adzkiya, D. (2021). Predicting Timely Graduation of College Students Using Fuzzy Logic. Proceedings of the International Conference on Data Science, E-learning and Information Systems, 100-105.

Supriyanto, A., & Fitriani, N. (2020). Predicting College Students' Graduation Status Based on Fuzzy Logic: A Case Study in Indonesia. Journal of Intelligent Systems, 29(2), 315-326.

Arshad, R., Rehman, S., & Arshad, N. (2020). Predicting Graduation Outcome of College Students using Fuzzy Logic. Journal of Artificial Intelligence Research & Advances, 7(1), 23-30.

Sarker, R. S., & Sultana, F. (2019). Predicting Graduation Outcome of Students using Fuzzy Logic. International Journal of Computer Science and Network Security, 19(12), 202-209.

Trisnawati, N., & Jatmiko, W. (2019). Fuzzy Logic Approach for Predicting College Students' Graduation Time. Journal of Physics: Conference Series, 1234(1), 012034.

I. M. T. Darmawijoyo, N. D. Hidayat, and M. Syaodih. (2019). "Application of Fuzzy Logic for Decision Making in Admissions Selection at Higher Education Institution." Journal of Physics: Conference Series, 1282(4), 042015.

A. P. Alamsyah and B. R. Triyatno. (2020). "Development of a Decision Support System for Determining the Best Employees Using Fuzzy Logic Method." Journal of Physics: Conference Series, 1568(3), 032056.

Downloads

Published

2023-11-03

How to Cite

Rangga Widiasmara, Muhammad Iqmal Basori, Raihan Rafi Listyan Putra, & Anggraini Puspita Sari. (2023). Analisis Perbandingan Metode Fuzzy Logic Sugeno dengan Tsukamoto dalam Keputusan Prediksi Kemungkinan Lulus Mahasiswa Tepat Waktu . Prosiding Seminar Nasional Informatika Bela Negara, 3, 79–85. Retrieved from https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/200

Issue

Section

Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.

Similar Articles

<< < 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.