Optimasi Suhu Drosera sessilifolia Menggunakan Metode Time Proportional Control – Histeresis Berbasis IoT
Keywords:
Internet of Things (IoT), Drosera sessilifolia, Time Proportional Control, Histeresis, Kontrol SuhuAbstract
Drosera sessilifolia membutuhkan lingkungan bersuhu stabil untuk tumbuh dengan optimal, namun fluktuasi suhu pada budidaya indoor sering menghambat pertumbuhannya. Penelitian ini mengembangkan sistem kontrol suhu berbasis IoT menggunakan ESP32 dan sensor DS18B20 dengan metode Time Proportional Control (TPC) yang dikombinasikan logika histeresis untuk menjaga suhu tetap stabil secara otomatis dan efisien. Hasil pengujian menunjukkan bahwa sistem TPC-Histeresis mampu mempertahankan suhu ideal bagi tanaman dan dapat dipantau secara real-time melalui aplikasi Blynk, sehingga efektif mendukung budidaya indoor Drosera sessilifolia.
References
A. Rifat, P. Patel, and B. S. Babu, “The Internet of Things (IOT) in Smart Agriculture Monitoring,” Eur. J. Inf. Technol. Comput. Sci., vol. 2, no. 1, pp. 14–18, 2022, doi: 10.24018/compute.2022.2.1.49.
C. Bersani, C. Ruggiero, R. Sacile, A. Soussi, and E. Zero, “Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0,” Energies, vol. 15, no. 10, 2022, doi: 10.3390/en15103834.
P. M. Gonella, P. T. Sano, F. Rivadavia, and A. Fleischmann, “A synopsis of the genus Drosera (Droseraceae) in Brazil,” Phytotaxa, vol. 553, no. 1, 2022, doi: 10.11646/phytotaxa.553.1.1.
W. Makowski et al., “Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera,” Biomolecules, vol. 14, no. 9, 2024, doi: 10.3390/biom14091132.
O. Lopez-Santos, D. S. Dantonio, F. Flores-Bahamonde, and C. A. Torres-Pinzón, “Hysteresis control methods,” in Multilevel Inverters: Control Methods and Advanced Power Electronic Applications, 2021. doi: 10.1016/B978-0-323-90217-5.00002-2.
H. Khalkhali, A. Oshnoei, and A. Anvari-Moghaddam, “Proportional Hysteresis Band Control for DC Voltage Stability of Three-Phase Single-Stage PV Systems,” Electron., vol. 11, no. 3, pp. 1–15, 2022, doi: 10.3390/electronics11030452.
J. Schlauer, A. Fleischmann, S. R. H. Hartmeyer, I. Hartmeyer, and H. Rischer, “Distribution of Acetogenic Naphthoquinones in Droseraceae and Their Chemotaxonomic Utility,” Biology (Basel)., vol. 13, no. 2, 2024, doi: 10.3390/biology13020097.
L. C. Mathias, L. M. G. Castanha, A. V. de Oliveira, and E. V. Kuhn, “Assessment of Phase Control and Time-Proportional Control Schemes for TRIAC Applications,” J. Control. Autom. Electr. Syst., vol. 34, no. 6, 2023, doi: 10.1007/s40313-023-01042-0.
T. L. Narayana et al., “Advances in real time smart monitoring of environmental parameters using IoT and sensors,” Heliyon, vol. 10, no. 7, 2024, doi: 10.1016/j.heliyon.2024.e28195.
M. R. Z. Sabegh and C. M. Bingham, “Impact of Hysteresis Control and Internal Thermal Mass on the Energy Efficiency of IoT-Controlled Domestic Refrigerators,” in Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019, 2019. doi: 10.1109/SEGE.2019.8859886.
A. Daoud, “An Arduino-based low-cost hardware for temperature control,” WSEAS Trans. Syst., vol. 20, pp. 54–66, 2021, doi: 10.37394/23202.2021.20.8.
K. Elgazzar et al., “Revisiting the internet of things: New trends, opportunities and grand challenges,” Front. Internet Things, vol. 1, no. November, pp. 1–18, 2022, doi: 10.3389/friot.2022.1073780.
D. I. Săcăleanu, M. G. Matache, Ștefan G. Roșu, B. C. Florea, I. P. Manciu, and L. A. Perișoară, “IoT-Enhanced Decision Support System for Real-Time Greenhouse Microclimate Monitoring and Control,” Technologies, vol. 12, no. 11, 2024, doi: 10.3390/technologies12110230.
V. Kumar, K. V. Sharma, N. Kedam, A. Patel, T. R. Kate, and U. Rathnayake, “A comprehensive review on smart and sustainable agriculture using IoT technologies,” Smart Agric. Technol., vol. 8, no. February, p. 100487, 2024, doi: 10.1016/j.atech.2024.100487.

